このページにおける、サイト内の位置情報は以下です。


社団法人日本電気技術者協会 電気技術解説講座 文字サイズ変更ヘルプ
Presented by Electric Engineer's Association
対称座標法2<基礎編1> 対称座標法の基礎計算とそのツール 元東京電機大学短期大学教授 間邊 幸三郎

三相回路の計算法の中でとかく理解しにくいとされている「対称座標法」について、できるだけやさしく解説し、その使い方を習得する。本講では、基礎編1として、対称座標法の基礎計算とそのツールについて解説する。

1. 対称座標法の計算の仕組み

対称座標法という計算法の流れは前回で説明したように第1図のようになる。

第1図 対称座標法の計算フロー第1図 対称座標法の計算フロー
第1図 対称座標法の計算フロー

このため対称座標法計算の主要部分は三元一次方程式を解くことにある。

2. 行列

データ(数値、変数など)を第2図(1)のように縦横に規則正しく並べたものを行列(マトリックス)という。第2図(2)のように行列においてデータの横の並びを、縦の並びをという。したがって、第2図に示す行列は3行3列の行列である。行列を構成する個々のデータを要素という。

第2図 行列第2図 行列
第2図 行列

例1 formula01formula01において、第2行は「4 5 6」であり、第3列は「3 6 9」である。

また、第3行第2列の要素は「零」である。

例2 formula02formula02は2行2列の行列。

例3 formula03formula03は2行1列の行列。

例4 formula04formula04は3行1列の行列。

例5 formula05formula05は1行3列の行列。

例6 formula06formula06は3行3列の行列であり、「a12 」は第1行第2列の要素である。

この例のように行数と列数の等しい行列のことを正方行列という。例1、例2、例6は正方行列である。

3. 行列の表記

行列には第3図(1)~(4)のような表記の方法がある。第3図(5)は「行列式」に使用される表記なので、行列の表記には使用できない。

第3図 行列の表記第3図 行列の表記
第3図 行列の表記

4. 行列の性質

行列には次のような性質がある。

(1) 相等

(5)式において ai j = bi j ならば、

formula07
formula07

(2) 和と差

formula08
formula08
formula09
formula09

例7  formula10formula10

(3) 積

maru1maru1 行列の実数倍(k:実数)

formula11
formula11
formula12
formula12
formula13
formula13

例8  formula14formula14

 

maru2maru2 行列と行列の積

例9  formula15formula15

例10  ある家庭の光熱水費のデータが、電気、ガス、水道の料金単価を20円/kWh、120円/m3、140円/m3として、A月、B月、C月3ヵ月の電気使用量(kWh)が510、630、660、ガス使用量(m3)が24、31、30、水道使用量(m3)が23、30、27である場合、これら各月の使用量料金(料金単価は一定で、使用量料金 = 使用量×料金単価で計算できるものと仮定する)の合計をDEFとすれば、これらは次の行列で表すことができる。

formula16
formula16

例11  formula17formula17

例12  formula18formula18

formula19formula19

第4図に(17)式の計算内容を示す。

第4図 (17)式の計算内容第4図 (17)式の計算内容
第4図 (17)式の計算内容

第5図には対称座標法で多く使用される3行3列の正方行列の積の計算過程を示す。

第5図 行列の積(3行3列の場合)第5図 行列の積(3行3列の場合)
第5図 行列の積(3行3列の場合)
本図はクリックすると大きく表示されます
formula20
formula20

積の性質 maru1maru1 積の計算ができる行列の条件・・・左行列の列数 = 右行列の行数

maru2maru2 「m 行 p 列の行列」と「p 行 n 列の行列」の積は「m 行 n 列の行列」となる。

maru3maru3 一般に、formula21formula21

(5) 商

行列の商は行列の積で計算する。行数と列数の等しい正方行列において、左上から右下を結ぶ対角線上の要素(対角要素という)a11a22 、・・・an nが零でなく、その他の要素がすべて零の場合の行列を対角行列、対角行列で対角要素すべてが1である場合の行列を単位行列という。

対角行列 formula22formula22       単位行列 formula23formula23

また、単位行列では、formula24formula24

が成立する。

 

formula25formula25

 

[逆行列]  行列AA逆行列A_-1A_-1とすれば、formula26formula26

の性質がある。いま、formula27formula27であるとき、両辺にA_-1A_-1を左から乗じれば、

左辺 formula28formula28

右辺 formula29formula29

formula30formula30

となるから、一般に、formula27formula27の関係にあるとき、「DDA_-1A_-1を左乗するとBBが求まる」。

formula31formula31

 

例14  formula32formula32

 

予備計算 maru1maru1 formula33formula33

予備計算 maru2maru2 第1行第1列の余因数formula34formula34

 

formula35formula35

 

formula36formula36

例題  下図の回路について、各枝路に流れる電流を求めよ。

例題例題

【解答】

解答解答

上図のように電流とその方向を仮定し、点線イ、ロの閉路についてキルヒホッフの法則の第2法則を適用すると、(38)、(39)式が成立する。

同式を整理すると(40)式、(41)式となる。

formula37
formula37
formula38
formula38
formula39
formula39

上式を行列で表示すると(42)式となり、電流の行列は(43)、(44)式となる。

formula40
formula40

formula41formula41

 

formula42formula42

ゆえに、I1 = 2A、I2 = 1Aで、2ΩにはI1+I2 = 3A つまり、左から右へ3Aが流れることになる。

[参考]  求めた逆行列は次のような計算で正誤が確認できる。(検算)

 

formula43formula43

5. 対称分変換の計算

いま問題としている回路において、各相の電圧、電流をVa_dotVa_dotVb_dotVb_dotVc_dotVc_dotIa_dotIa_dotIb_dotIb_dotIc_dotIc_dotとすれば、電圧と電流の対称分への変換は、次のように(1)、(2)式(対称分変換式と呼ぶ)で行われる。

formula44
formula44
formula45
formula45

これらの式を行列で表せば、電圧と電流の行列は、

formula46formula46

formula47
formula47

となる。

6. 対称分逆変換の計算

また、これらの対称分を実際の回路の電圧に変換(逆変換)する式、

formula48
formula48

formula49
formula49

となり、電流の逆変換式

formula50
formula50

formula51
formula51

と、それぞれ行列で表示できることが分かる。

いま、ここで、

回路の電圧、電流をformula52formula52

 

その対称分を formula53formula53 とし、

 

実回路から対称分を求めるのに使用している行列を変換行列と呼ぶことにすれば、変換行列CCを使って、(46)、(47)両式は次のように表される。

formula54
formula54

変換行列CCの内容は、(46)、(47)両式から

formula55
formula55

であることが分かる。

次に(50)式の両辺にCCの逆行列C_-1C_-1を左乗すれば、formula56formula56となるので、実回路の電圧VVは、

formula57
formula57

となり、対称分から実回路への変換ができる。また、電流についても、同様にして、

formula58
formula58

で実回路変換ができる。

ここで、CCの逆行列C_-1C_-1は巻末の[参考1]および[参考2]から求められ、

formula59
formula59

であることが分かる。

なお、このことは逆行列の計算をするまでもなく、(53)、(54)両式が内容的に(48)、(49)両式と同じであることに気付けば、これらの式を見比べることによってC_-1C_-1が(55)式の内容であることが分かる。

したがって、これら一連の計算、すなわち実際の電圧や電流から対称分を求める変換(対称分変換)と、その逆計算である逆変換の計算は、第6図に示すように変換行列CCC_-1C_-1を使うことで非常にスッキリと、しかも簡明に表現して取り扱うことができる。

第6図 行列を使用した対称座標法の計算フロー第6図 行列を使用した対称座標法の計算フロー
第6図 行列を使用した対称座標法の計算フロー

つまり、対称分変換と逆変換は変換式が互いに独立しているのではなく、行列の計算規則でキチンと関連づけられて表現されている。このため、「実回路量と対称分回路量とは変換行列CCC_-1C_-1を介して簡単に相互変換できる」わけである。



**** [ 参 考 1 ] 逆 行 列 の 求 め 方 **************************************

行列に関する数学書によれば、正方行列、

formula60formula60であるとき、|A|≠0であれば、AAの逆行列A_-1A_-1は、

formula61
formula61

であることが知られている。

ただし、Ai j は第 i 行第 j 列の余因数である。ここで、余因数Ai j とは、AAの行列式 |A| の第 i 行と第 j 列を取り払って得られる行列式を、i + j が偶数の場合は+ 1倍、奇数の場合は- 1倍したものである。例えば、余因数A12は次のように計算される。

formula62
formula62

**** [ 参 考 2 ] 変 換 行 列 C の 逆 行 列 C-1 ******************************

変換行列formula63formula63の逆行列C_-1C_-1は、参考1の「逆行列の求め方」によって次のようになる。

formula64
formula64

formula65formula65

 

Ci j は、|C| の i 行 j 列の余因数で、下記のように計算される。

formula66formula66

 

**** [ 参 考 3 ] 行 列 の 性 質 *******************************************

1 formula67formula67 formula68formula68
2 実数(k)積 formula69formula69 formula70formula70
3 一般に formula71formula71 formula72formula72
4 formula73formula73 formula74formula74
5 商と逆行列 formula27formula27 ならば、formula75formula75 formula76formula76
6 逆行列 formula77formula77 formula78formula78